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I. Introduction.

This paper describes research into a new estimate for the
number of uniques in a population based on the
information provided by an observed sample. That
estimate forms the basis of an estimate for the proportion
of uniques in the sample which are unique in the
population. The estimate is produced by a fitting
algorithm, and much of the work so far has been directed
toward producing a good fit. The fitting algorithm is
describedindetail and resultsare presented for 25 samples
fromaknown population. Whilethe settingislimited, the
results are encouraging.

I1. Motivation for problem

One approach to formulating the disclosure risk for a set
of dataisto measureitsdiversity, particularly with respect
to the set of variables that one suspects are either
observable or exist in some more public data set.
Stati stical agenciesareparticularly interestedineval uating
disclosure risk since much of the data they publish is
collected under some pledge of confidentiality.
Willenborg and Waal [1996] give athorough treatment of
evaluating disclosure risk.

Before exploring the idea of risk on a set of sample data,
lets begin by considering the parent population. If only
one individual in the population has a particular
combination of values for these variables then the
combination of values, or key, isuniqueanditislikely that
the identity of the individual may be deduced. One can
classify all therecords of the population by their key. If a
recordisin aclassof size one, itisunique, henceat risk of
disclosure. If it isin aclass with two other records, it is
indistinguishable from them with respect to the key and
the associated risk is much lower. So a count of unique
recordsisastart in determining theoverall risk of thedata
set. For a sample we not only need to observe the
distribution of uniques but also determine what
percentage of the uniquerecordsobserved inasampleare
also unique in the parent population, sincethosethat are

not unique in the popul ation have lower risk.
I11. Background of problem

A strategy for estimating the proportion of uniques uses
subsampling, mimicking the original sampling fraction.
The number of uniques in the subsample that are unique
in the sample is taken as a proxy for the relation of the
sample uniques to population uniques. This estimate
works reasonably well when the sampling fractionislarge.
Note that this technique has clear limitations, recursive
sampling of any population eventually givesapopulation
consisting only of uniques, so the action of sampling
altersthe uniqueness distribution.

Another estimate [Zayatz 1991], related to the method
presented here, examines the equivalence classes in the
sample. The equivalence classes of size 1 are the unique
keys. The estimate calculates the probability that an
equivalence class of agiven size in the population will be
represented by an equivalenceclassof sizelinthesample
and assumes the equivalence class structure of the
population is the same as the sample's. The estimate
presented here is similar, except we estimate the
equivalenceclassstructure of the popul ation by means of
afitting algorithm.

Finding a good estimate for the number of uniques has
been asubject of research in the disclosure community for
thelast 10 years. For aBayesian approach see [Samuels].
A related problem, estimating the total number of classes
has been kicking around for the last 50 years. For recent
work on this problem see [Haas Stokes]

IV. Approach

The classification of records by key variables gives one
accessto adistribution of particular interest: thecomplete
count of classes by size. That is, we will look at Y =
(Y1 Y5., Yy) Where

% areindividual records and
% belong to the same class, { x} ,if they have the same

key
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Y=#{classes{x} st.#{x}=i},

sothat Y, isthe count of uniquerecords, Y,the number of
different keyswhich each have 2 records in the data set
etc. We will use Y° to denote the distribution of the
population, YE to denote the distribution of our estimate
of thepopulation, and Y Sto denote the distribution of the
sample. Note that 3(i*Y")=N.

What is the relationship between the distribution of the
population and the sample? In the example we look at,
based on censusdata, the sampling fractionistakento be
1/6. For simplicity, we will assume Bernoulli sampling.
What isthe expected number of unique sample elements?
If arecord isuniquein the population it will be unique in
the sample, provided it isselected. That is, we expect 1/6
(p) of the population uniquestowind up inthesampleand
provide one component of the uniques observed there.
Consider a pair of records that comprise a class of two.
The probability that they contribute to the class of
uniques in the sample is 2pq, ie one is selected and the
other isnot. Hence the expected contribution from all of
the classes of size 2is2pg* Y*,. So the expected number
of uniquesin the sampleis

p* YP +2pg* Y 4+3pg® YP,+ ..=3b(p,1,i)) Y,
where b() are binomial probabilities. More generally
D M* YP=E[YP]
where M isan upper triangular matrix with M(i,j)=b(p,j i)
and E[YP] is the vector whose entries are the expected
number of classes of sizei in the sample, given P.
Our objective isto approximate a solution for
) M*Y=YS

where Y5, is the distribution of number of equivalence
classes of sizei observed in the sample.

M isupper triangular henceinvertable, unfortunately itis
rather large and the determinant is close to 0 so that
finding an approximate solutionto equation 2isnontrivial.
We will present an iterativefitting algorithm that givesan
approximation, YE, in the sensethat d(M* YE|Y®) is"small"
(relative to 3 YS**2) where d=3(Y;-YS)**2.

V. Assumptions.

In order to bring the computational aspect of the problem
to a reasonable level, we make some mild assumptions,

some of which are specific to our data. Our population
consists of recordsdrawn from the 1980 decennial census.
The population was initially described in [Zayatz 1991]
and wasresearched in connection with PUMS (Public Use
Microdata Samples) disclosure control; itsclass structure
isoutlined in table 2. Wehavealready assumed Bernoulli
sampling to derive M. We restrict the estimates of the
population class size distribution to descending
distributions s.t. 3(i*Y")=N. One consequence of the
descending assumption in that no estimate which is close
to (in the sense above) the true population, can be close
inthetails. A typical populationwill haveakey, or asmall
group of keys, that is significantly more frequent than all
others. In our data there are no keys that form any class
of sizes 142 through 297, but there is akey that occurs 298
times. The long tail is fairly representative of the
distribution in most populations. Barring extremely
organized correlation, thisisthe key that exhibitsthe most
frequent values of al variablesthat make up thekey (eg a
household that owns the home, with 2 nonhispanic white
adults and 2 nonhispanic white children etc). No
descending distribution canfit suchatail, but our concern
isto estimate Y, at the head of the distribution.

We havetruncated theM matrix to 100x100. Bounding the
tail(s) of the matrix in general is a problem for which we
lack a solution. For our known population d(M ;% YP-
M 0* YP)<1, where d is the sum of squared differences
between coordinates, and M ,,, is O filledto match the size
of thelarger matrix. The short tail of the estimatetendsto
further diminish the effect of truncation in the application.

VI. Defining aneighborhood of Y

It is difficult, or at least computationally intensive, to
construct a grid of descending distributions s.t.
3(i*Y;)=N. The descending assumption suggests trying
a gradient search. That is, by examining nearby
distributions, determinewhichimageunder M best fitsthe
given sample and iterate.

Recall that Y; isthe number of classesof sizei. If Y and Y’
differ only in that Ys-YN;=1 then the population
represented by Y has 5 more units than the population
represented by YN. To preserve additivity and in some
sense cover the d-neighborhood of Y, we define an
(s,t,n)-neighbor of Y to be:

Y,(st,n)=Y, foriOst
n
Y{(st,n)=Ys+ P



Y (st,n)=Y- %

That is, we will change n units of the population from
classstoclasst. Theresulting distribution still preserves
additivity to N. The motivation for a scale parameter is
computational: we wish to achieve a coarse fit of the
image of the estimate to the given sample before fitting
with smaller increments.

VII Thefitting algorithm

The algorithm begins from a fixed point, the distribution
where every element of the population is unique. In the

N N

first iteration only the move of 1 uniques to Y

doubletons is considered. If that image is closer to the
sample, then it becomes the central point and it's
neighbors are considered in the next iteration. A

neighbor, Y% (s,t,n) ,is adopted only if it's image is

. E . . .
closer thantheimageof Y i andit'simageiscloserto

YS than any other neighbor. If no neighbor yields an
improvement then the size of the increment, n, is
decreased. The process is stopped when the increment
fallsbelow njaq.

More precisely:
Let Y,°= N and YJ-E0 = 0 for j01 and n, be large.

Then define
YE|+1 = YEI (X’ y’ ni )

where (X,y,n;) is descending, positive and satisfies
d(M*Y5 (x,y,n),Y?) £d(M*Y" (st,n),Y®)

G (st,n) with Y& (s,t,n) descending, positive and

d(M*Y5 (x,y,n),Y®) <d(M*Y"5 Y®)
else YEx = YE and N, = %‘ . If n<njast then

stop.
VIl. Results

Twenty five random samples of the parent population
were taken and their uniqueness distributions were
determined. While not sufficient to draw any solid

conclusionsabout variance and bias, the setsof datahave
enough variety towaork on the efficiency of the algorithm
and giveanindication of the effectiveness of the estimate.
The algorithm described above was applied to each, with
n,=2048 and npx=8. Results seem indifferent to the
selection of n,, but | got a slightly better estimate of the
proportion of uniques with njax=32 despite a weaker fit.
The results for nj=8 are displayed in tables 2 and 3, the
later focusing on convergence. In general, successive
iterations take longer and longer to complete: 300
iterations completein roughly 4 minutes, the 400 in about
10 minutes (On aPentium |1 PC, using SAS).

Table 2 show various estimates of the fraction of sample
uniques that are unique in the population. The actual
fraction is given together with the estimate derived by
subsampling, the classbased estimator in[Zayatz] andthe
fitting estimate for the same 25 samples. The table is
sorted by therelative difference of thefitting estimate and
the actual value. There is a more or less even split of
underestimation and overestimation suggesting that
variance is more of a problem than bias. In contrast the
subsampling estimate and the class based estimate are
very regular, but shows considerable bias.

Table 3 is sorted by the number of iterations it took to
complete. It shows some variation in fitting the sample

distribution and in estimating Y, . The fit of the first

three coordinatesis given in thetable, aswell asthetotal
distance from theimage of the estimate to the sample. As
agross measure of theregularity of the samplewe provide

its distance to the expected distribution M *Y" . The

most sobering result wasthat Y,> , Y, and Y,> were fit
more or less exactly for al of the 25 samples, regardl ess of

how good the estimate of Ylp was. The estimated

population fit the description offered by the sample, even
when that estimate was off.

VIIlI Conclusion and further research.

In order to apply thismore generally weneed M for simple
randomsampling, boundsfor thetail of M*Y, and abound
on the error of the estimate itself. The later has two
components, first the error associated with treating the
sample as an expected value and second the error in
approximation.

Convergence might be improved in a number of ways.
One could smooth the sample so that it would be easier to
fit. A different definition of d may find a more central
solution. Relaxing thedescending assumptionwould give



abetter fit, including the tail.
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Table2

Iterationsfrom

388
207
232
222
191
542
151
456
147
280
169
291
424
221
191
522
621
748

Equivaence Classesin the Data Set

18
12
23
18
15
11
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Class
Size
41

42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Frequency
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Class

Size
61
62
64
68
69
70
72
75
76
77
78
79
80
86
87
88
101
103
121
141
298

Estimates of Proportion of Sample Uniques that are Population Uniques
(sort by relative bias of fit estimate)

Frequency Class  Frequency
Size
22026 21
2954 22
1090 23
560 24
354 25
223 26
173 27
109 28
106 29
87 30
64 31
53 32
54 33
48 34
26 35
37 36
25 37
14 38
21 39
16 40
Distance Distance
from
M CYEtoYS  YStoM C(YP
217.7 2845.8
107.5 601.1
145.6 738.3
189.1 7228.2
128.2 423.9
236.0 3726.6
108.1 4885.7
289.9 1438.7
99.9 4620.2
154.7 1602.8
126.1 3220.9
261.6 4214.8
166.5 3785.4
190.3 1758.6
170.1 700.2
209.0 418.9
311.6 884.6
415.1 2025.7

Proportion

Zayatz
Fit Subsample Class

Actual Estimate Estimate Estimate
0.649 0.732 0.722 0.730
0.662 0.736 0.730 0.731
0.660 0.732 0.740 0.732
0.664 0.721 0.729 0.734
0.657 0.701 0.729 0.734
0.644 0.685 0.751 0.739
0.649 0.690 0.733 0.741
0.663 0.702 0.739 0.734
0.661 0.698 0.729 0.731
0.656 0.689 0.733 0.729
0.658 0.686 0.731 0.726
0.656 0.673 0.722 0.726
0.656 0.650 0.743 0.740
0.657 0.648 0.732 0.736
0.658 0.648 0.727 0.729
0.658 0.646 0.739 0.732
0.661 0.645 0.733 0.731
0.654 0.638 0.741 0.736

Frequency

P RPRPRPRRPNRPRRPNRPRPRPRE,RPRNNNNREAND®

Actual-Fit

Actual

-0.127
-0.111
-0.109
-0.086
-0.067
-0.063
-0.063
-0.059
-0.056
-0.050
-0.042
-0.026
0.008
0.014
0.016
0.018
0.023
0.025



188 61.5 1242.2 0.662 0.644 0.720 0.726 0.027

469 235.4 2562.2 0.652 0.632 0.735 0.733 0.030

215 185.7 1239.6 0.657 0.636 0.722 0.728 0.032

394 3184 5778.4 0.655 0.628 0.731 0.731 0.041

164 101.2 10254.8 0.661 0.618 0.728 0.736 0.064

365 265.6 10395.6 0.660 0.597 0.719 0.726 0.095

697 338.3 864.2 0.663 0.554 0.740 0.733 0.164
Table3 Fit and Estimation for 25 Samples from the Population

(sort on fit iterations)

Distance Estimate Distance The Absolute Fit
from of from inthefirst
image of population sample 3 coordinates
estimate uniques to average
to sample sample
Iterations d(MCYE Y9 \& d(YSM (YP) MOYEey;  MOviay; MOviays
147 99.9 23092 4620.2 0.1 0.2 11
151 108.1 23332 4885.7 0.0 0.3 0.7
164 101.2 21052 10254.8 0.2 05 05
169 126.1 22740 3220.9 0.1 04 0.2
188 61.5 21436 12422 0.1 0.1 0.2
191 170.1 12612 700.2 03 04 0.7
191 128.2 23508 4239 0.1 05 0.7
207 107.5 24612 601.1 0.1 0.3 0.8
215 185.7 21172 1239.6 0.2 0.2 11
221 190.3 21564 1758.6 04 0.6 13
222 189.1 24500 7228.2 0.0 0.2 11
232 145.6 24580 738.3 0.2 05 0.2
280 154.7 22916 1602.8 0.2 0.6 0.1
291 261.6 22292 4214.8 03 0.7 12
365 265.6 19628 10395.6 03 04 25
388 217.7 24324 2845.8 0.2 0.3 20
394 3184 21268 5778.4 01 0.2 10
424 166.5 21884 3785.4 0.3 04 238
456 289.9 23596 1438.7 04 11 0.2
469 2354 21060 2562.2 05 0.7 35
522 209.0 21652 4189 0.2 0.1 19
542 236.0 23092 3726.5 0.2 0.2 22
621 311.6 21668 884.6 0.0 0.1 19
697 338.3 18524 864.2 04 0.7 31
748 415.1 21460 2025.7 0.2 0.3 21

actual 22026



